Artificial Intelligence

an entry for
The MacMillan Encyclopedia of Computer Science

George F. Luger
&
William A. Stubblefield

Computer Science Department
University of New Mexico

May 1991

A._Definition

Artificial Intelligence (Al) is that branch of computer science concerned with the
study of knowledge representation and search. lts goals are the creation of computer
programs that behave in an intelligent fashion, and the use of computational models to
better understand intelligent behavior in humans, machines, and societies.

In expanding this definition, we examine artificial intelligence from three different
perspectives:

1. Historical. Artificial intelligence is considered a subdiscipline of computer
science. Although the roots of Al include an older tradition of philosophical and
psychological efforts to understand the nature of intelligence, Al as a discipline began
with the creation of the computer, as seen in Section B.

2. Methodological. Traditionally, artificial intelligence has emphasized the use of
symbolic data structures to represent knowledge of a domain, formal rules of
inference to manipulate these structures and search algorithms to apply this
knowledge to problem solving. Section C examines this methodology.

3. Application. Progress in Al is driven by a number of difficult and important
application areas, including natural language understanding, expert systems,
intelligent problem solving, planning and learning. The article concludes, Section D,
with an outline of these applications.

B. m I he Turin nd _th rigin f Al

Although the 18th, 19th and early 20th centuries saw the formalization of science
and mathematics, it wasn't until the creation of the digital computer that Al became a
viable scientific discipline. By the end of the 1840's, electronic digital computers
demonstrated their potential to provide the memory and processing power required by
intelligent programs. It was then first possible to implement formal reasoning systems
on a computer and empirically test their sufficiency for exhibiting intelligence.

One of the first papers to address the question of machine intelligence was written in
1950 by the British mathematician Alan Turing. Computing Machinery and Intelligence
(Turing 1950) is important, both for Turing’s conjecture that intelligence is open to a

formal characterization, independent of a biological brain, and his response to
arguments against the possibility of automating intelligence.

While Turing had already given computing machines a precise characterization
through his definition of the Turing machine, he recognized that intelligence itself was
not amenable to such mathematical axiomatization. In order to circumvent the
difficulties of defining intelligence, Turing proposed a behavioral evaluation of
intelligent programs, called the imitation game and now refered to as the Turing test.
This test measures the performance of an allegedly intelligent machine against that of a
human being. The test places a human and the computer in rooms apart from a second
human, the interrogator. The interrogator communicates with them by means of a
textual device such as a computer terminal and attempts to distinguish the computer
from the human on the basis of answers to questions asked over this device. If the
interrogator is unable to reliably distinguish the machine from the human, then, Turing
argues, the machine must be regarded as intelligent.

Important features of the Turing test are:

1. It gives us an objective noticn of intelligence, i.e., the behavior of a known
intelligent being {the human) in response to a set of questions. This standard allows
us to determine if the machine is intelligent, while avoiding questions about the
“true” nature of intelligence.

2. It prevents us from being sidetracked by confusing currently unanswerable
questions relating to whether the machine uses the “appropriate internal processes”
or whether the computer is actually “conscious.”

3. As a blind test, it eliminates any bias in favor of the human over the machine by
forcing the interrogator to focus entirely on the content of the questions.

The Turing test has played an important role in the development of Al. Besides giving
theoreticians a criteria for recognizing an intelligent program, it also gives applications
designers a basis for evaluating software performance. Expert systems, for example,
are usually validated by comparing the performance of the program to that of a human
expert on a common set of problem instances. The MYCIN program, for instance, was
evaluated by letting a group of practitioners blindly evaluate the diagnoses provided by
MYCIN and a group of human practitioners on ten actual meningitis cases (Buchanan and
Shortliffe 1984).

Al is unique among the sciences in tracing its beginnings as a formal discipline to a
specific place and time. The Dartmouth Summer Research Project on Artificial
Intelligence was held in 1956, and was the first gathering of researchers who had
written computer programs exhibiting some form of intelligent behavior. A brief
description of several of the invited presentations at this workshop and other early
research provides a perspective on the state of the art in Al in the late 50’s and early
60's. This work is also important in that it established many of the core concerns of
contemporary artificial intelligence.

Arthur Samuel's checker player (Samuel 1959) used a number of techniques first
deveioped in the field of operations research. These include hili climbing, mini-max
search, and the use of an evaluation polynomial to rate board states. This program was
remarkable in a number of ways: it was the first example of a machine learning
program, improving its performance by changing its evaluation function and by storing
board states and their evaluations for future use. Through these techniques, the program

2 4/24

learned to play an excelient game of checkers; more importantly, the techniques Samuel
developed remain a vital part of machine learning methodology. In addition, the program
was impressive for its use of sophisticated representational and memory management
techniques to overcome the limitations of 1950's hardware.

Herbert Gelernter (Gelernter 1963) developed a geometry theorem proving
program that successfully proved many theorems from high school geometry texts.

Newell, Shaw and Simon, then researchers at the Carnegie Institute of Technology,
presented their Logic Theorist (Newell and Simon 1963a). They also presented some
interesting research comparing a run of their computer program proving mathematical
theorems with traces of human subjects solving the same theorems. This comparative
research is arguably the beginning of work in cognitive science, the use of computer
programs as a tool for modelling human cognition. EPAM (Feigenbaum 1963} was
another early cognitive program which attempted to model the way in which humans
memorize and index sets of nonsense syllables. EPAM was developed by Edward
Feigenbaum, one of Herbert Simon’s students; Feigenbaum was later to play an
important role in the development of the first expert systems and the Stanford Al
research laboratory.

Newell and Simon’s General Problem Solver (Newell and Simon 1963b) was the
first effort to provide a unified theory of human cognition in the form of a computer
program. The GPS assumed that any problem could be solved by a general method of
heuristic state space search.

It was also at the Dartmouth conference that John McCarthy selected the name
Artificial Intelligence for the new field of research. The word artificial was selected for
its literal meaning: to make (the Latin verb facere) by skilled effort (ars, artis, the
root for the English artist or artisan). McCarthy’s early contribution to Al was the
desigh of the LISP (LISt Processing) language. Over the years, LISP has been the single
most important tool for Al research and development.

These early results were collected in the book, Computers and Thought (Feigenbaum
and Feldman 1963). The continuing royalties from this collection still finds the
Computers and Thought Award, presented biannually at the International Joint
Conference on Artificial Intelligence (IJCAI). Technical conferences such as IJCAI, and
the yearly American Association for Artificial Intelligence (AAAl) conference continue to
serve as the primary forums for research in artificial intelligence. In addition,
communication among Al researchers has been promoted by the numerous books and
technical journals including Artificial inteffigence, The Al Magazine, Computational
Intelfigence and Cognitive Science.

C. The methodology of Modern Artificial Intelligence

If there is any unifying principle to current work in artificial intelligence, it is the
physical symbol system hypothesis (Newell and Simon 1976):

A physical symbol system consists of a set of entities, called symbols,
which are physical patterns that can occur as components of another type of
entity called and expression {or symbol structure). Thus a symbol structure is
composed of a number of instances (or tokens) of symbols related in some
physical way (such as one token being next to another). At any instant of time,
the system will contain a collection of these symbol structures. Besides these

3 4/24

structures, the system also contains a collection of processes that operate on
expressions to produce other expressions: processes of creation, meodification,
reproduction and destruction. A physical symbol system is a machine that
produces through time an evolving collection of symbol structures. Such a
system exists in a world of objects wider than just those symbol expressions
themselves. (p. 1186)

Newell and Simon then state the physical symbol system hypothesis:

A physical symbol system has the necessary and sufficient means for
general intelligent action.

This hypothesis states the underlying assumptions of Al in a succinct and empirically
falsifiable form. In addition, it outlines the methodology of “mainstream” work in
artificial intelligence:

1. Represent the important objects and relationships in the problem domain as
sentences in an appropriate formal language.

2. Define operations which transform these sentences in ways that reflect the
semantics of the problem domain. For example, these operations may be atomic
actions that a robot may take in the world, or rules in an expert system or logical
reasoning system.

3. Problem instances consist of a description (in the language of step 1) of the given
data or starting conditions of the instance (the start state) and a description of the
desired solution (the goal state).

4, Search the space of sentences produced by applying these operations to legal
expressions to find a series of operations that lead from the starting state to the goal
state.

The next section will examine the implementation of this methodology in more detail.

.1 Prohlem lvin n rch

State space searcg is based on the assumption that any problem could be solved by
searching through a space of appropriately defined operations on formal sentences.
These operations define a space of partial solutions called the state space. The technique
of solving problems by searching this space is called state space search: the search for a
series of operations that transform the starting state into the required goal state.

Much early work (1960 through the mid 1970’s} in Al was devoted to developing
state space search as a general problem solving method. This methodology was
successfully applied to a variety of fields including mathematical theorem proving,
planning, and problem solving. This work focused on finding !anguages that could
adequately describe classes of problems and strategies for efficiently searching the
resulting space. Many of these strategies, such as means ends analysis, were heuristic
in nature. That is, they provided intelligent guidance through the space while not
guaranteeing that such guidance would always produce an optimal problem solution.
Heuristics are further examined in section G.2.

4/24

In developing the methodology of state space search, the first order predicate
calculus was often chosen as a general language for describing problem states. First
order predicate calculus, because of its roots in mathematics and formal logic, provides
well understood, logically sound and complete inference rules. It can also be shown that
predicate calculus based theorem provers are turing complete; that is, any process that
could in principle be formalized can be formalized using predicate calculus. This
further strengthened its appeal as a general language for intelligent systems.

For example, suppose we would like to apply the methodology of state space search to
find a series of actions to transform a starting state into a desired goal (Figure 1).

drde kel

insert Figure 1 here*™**

The start state of the world is described using predicates:

block(a). block(b). block({c}.
clear{a). clear(c). ontable(b).
ontable(c). on(a,b). inhand(nil).

Similarly, we describe the goal state:

block{a). block({b). biock(c).
clear(a). clear(c). ontable(b).
ontabie(a). on(c,b). inhand(nil).

The operations that the robot can perform are also described using predicate
calculus. These operations consist of preconditions, which define circumstances when
the operation may be performed; an add list of sentences that are true when the operation
completes; and a delete list of things that are no longer true when the operation
completes. Some of the operations given our block stacking robot include:

pickup(X}):
Preconditions: clear(X} A inhand{nil)
Delete list: clear(X) A on(X, Y)
Add list: inhand{X)

stack(X,Y)
Preconditions: clear(Y) A inhand(X)
Delete list: clear(Y) A inhand(X)
Add list: inhand{nil} A on(X, Y)

in addition, the planner has rules for inferring additional properties of blocks world
descriptions. Such a rule might allow the program to infer when a block is clear:

v X block(X) A (=3 Y block(Y) A on(Y, X)) - clear(X)

This rule states that for all X, if X is a block and there does not exist a block, Y, such that
Y is on X, then X is clear. Note that much of the power of predicate calculus comes from
the use of variables (X, Y) to define general rules and operations such as that given
above.

Given this description of the blocks world domain, we may solve problems by
searching the state space to find a series of moves that transform the beginning state into
the goal state, as in Figure 2.

4/24

****Insert Figure 2 herg****

As this example shows, search based problem solving may be adapted to a variety of
problem domains. By establishing the methodology of knowledge representation and state
space search, this early work provided a framework for artificial intelligence. This
research explored a number of search strategies that continue to be used today, including
forward search, in which problem solving beglns with data and searches forward to find
a solution, and backward search, in which the search process begins with the desired
goal and works back to the given data. Other strategies explored at this time include
depth first search, breadth first search and best first search. These strategies are
described in more detail in (Luger and Stubblefield 1989).

.2 Pr ion m

Another important Al technique to emerge from this early research was the
production system architecture , Figure 3. The production system is a control method
that has proven particularly important for implémenting search algorithms, designing
expert system building tools and for modelling human performance. The production
system provides pattern directed control for an inferencing system; a rule is used when
and if it matches a state of the problem solving process. A production system consists of
three components: a set of production rules, a workmg memory and a recognize-act
control cycle.

1. The set of production rules. A productlon is a condition- action pair that
describes a single chunk of problem solving knowledge. The condition part of the rule
defines when the rule matches a state of a problem solving process. When the condition
matches a problem state, the rule may be fired, performing the associated action.
Production rules are often represented in an “if .then...” syntax.

2. Working memory contains a descnption of the current state of the problem
solving process. The contents of working memory are matched against the conditions of
the production rules, producing a set of enabled productions.

3. The recognize-act cycle is straightforward: the current state of problem
solving is maintained as a set of patterns in working memory. These patterns are
matched against the rules to produce a set of enabled rules, called the conflict sef.
Conflict resolution is the process by which the production system selects a rule from
this set. This rule is then fired. Its action modifies the contents of working memory,
and the cycle repeats. This continues until recognition produces an empty conflict set.
At this point the system stops and the problem solution is in working memory.

o ke ke 3

insert Figure 3 here™*”*

Newell and Simon used production systems to model human problem solving in
pioneering research done at Carnegie Mellon University in the 1960’s and 70's. In
their approach, production rules represented the knowledge and skills a human being
might possess. These might be rules for playing chess, solving physics problems or
diagnosing diseases. Working memory represents the human’s short term memory or
attention at a given time in the problem solving process. Thus, the production system
may be interpreted as modelling the activation of skills or chunks of knowledge by the
human’s current focus of attention, and the appllcatlon of those skills to problem
solving. ;

6 é 4/24

The production system has proven an effective architecture for the implementation
of Al programs for a number of reasons, including:

1. Ease of implementing state space search. The successive configurations of
working memory correspond to neighboring states in a space. The firing of rules
implements a transition beiween states.

2. Pattern driven reasoning. This simplifies the implementation of
opportunistic problem solving strategies, as required by Al. It allows a highly
flexible control structure in which the needs of a problem situation determine what
is done next, rather than relying on a previously specified procedural ordering.

3. Representational flexibility. We may use any language to represent
production rules, just as long as it supports pattern matching. For example, a
production system could be used to implement the planner of the previous section.

4. Flexibility of control. The production system supports a variety of search
strategies. By placing the given data of a problem in working memory and matching
conditions against this data, the reasoning proceeds in a forward fashion. By placing
a goal in working memory and matching against rule conclusions, the production
system implements backwards reasoning. In addition, by modifying the conflict
resolution strategy, the system can implement a variety of heuristic based
strategies.

For more information on production systems see (Luger and Stubblefield 1989;
Waterman and Hayes-Roth 1978)

i rong._Meth nd the Ri f Knowl B m

The major focus of this middle period (1960 through the early 1970s) of Al
research was on the development of general architectures for intelligent problem
solving. The production system is an example of this orientation. Another focus of this
work was on the use of heuristics to contro! search. Search based problem solving is
plagued by the large number of states in interesting problem spaces. As a search
algorithm moves into a space, the number of states tends to increase exponentially.
Consequently, intelligent problem solvers must have some way of effectively guiding the
search process.

A heuristic is any problem solving method which improves the efficiency of a
problem solver{Pear! 1984); in a production system, for example, a heuristic may be
used to select a rule in conflict resolution. However, this increase in efficiency has a
price, heuristic search may sacrifice the guality of solutions or even the ability of the
problem solver to find a solution to every instance. Means ends analysis, as discussed in
C.1 is an example of a heuristic. While it is effective in choosing a operation that
reduces the syntactic difference between the current state and the goal, it may break
down in certain situations. Consider a situation in which the current problem state is
such that any solution must temporarily increase the difference between this state and
the goal. Means ends analysis cannot select an operator in these situations.

During this middle period, the emphasis was toward finding general principles of
intelligent behavior. Consequently, there was much work on finding heuristics, like
means ends analysis, that might prove effective across a variety of domains. These
heuristics do not use knowledge of a specific domain to guide search, instead, they

4724

examine syntactic properties of the representations. Means ends analysis does this by
reducing the syntactic differences between states. Another general heuristic might favor
production rules that reduce the number of patterns in working memory.

However, research showed that general, syntactic methods, called weak methods,
were limited in their ability to solve problems. In trying to extend search based
problem solving methods to domains of human expertise, such as organic chemistry or
medical diagnosis, researchers realized that humans relied upon knowledge that was
specific to those domains. These heuristics are called strong methods, and underlie the
development of knowledge based systems, also known as expert systems.

MYCIN (Buchanan and Shortliffe 1984), a knowledge based system for diagnosing
bacteremia and spinal meningitis, is an early example of a knowledge based system.
Rather than relying on weak methods, the designers of MYCIN emphasized the
construction of a large base of specific diagnostic knowledge. This knowledge base was
represented as “if ... then...” rules. A typical MYCIN rule is

if (a) the infection is primary-bacteremia, and

{b) the site of the culture is one of the sterile sites, and

{(c) the suspected portal of entry is the gastrointestinal tract
then there is suggestive evidence (0.7} that infection is bacteroid

Note that this rule, unlike weak heuristics, is only useful for diagnosis of
bacteremia. These rules are applied to problem instances by an inference engine,
essentially a production system, that matches rules with the facts of a specific case.

Knowledge based systems have proven effective in practical domains for a number of
reasons. By using Al techniques like pattern directed search, they were able to solve
problems that were too complex or irregular to lend themselves to traditional
programming techniques. Knowledge based systems are able to explain their reasoning
by listing the sequence of rules used in solving a problem; this increases their
usefulness and understandability. By applying large amounts of knowledge to problems,
they achieved high levels of expertise in a variety of problems that were long considered
propriatary to human experts.

Knowledge based systems, based on such general problem solving techniques as state
space search, production systems and logical representation, represented an important
shift of emphasis for artificial intelligence. Instead of looking for general principles of
intelligent behavior, researchers began to focus on methods of acquiring and
representing the knowledge used by humans in probiem solving. This shift of emphasis
has raised a variety of issues that continue to be the focus of ongoing research. How may
we determine the specific knowledge used by a human in solving a problem? Humans are
notoriously inarticulate about their actual thought processes; consequently, knowledge
acquisition remains a difficult problem. Knowledge Based systems explain their
reasoning; how may these explanations be best organized and presented? Expert
systems, in spite of many current claims, are not human experts; what are the limits of
the formalization of knowledge?

Finally, because knowledge based systems require extremely large amounts of
knowledge for most domains, researchers have focused a great deal of energy on the
development of languages that simplify the acquisition, organization and application of
this knowledge. The study of knowledge representation has emerged as a central concern
of modern artificial inteiligence.

4/24

Research in knowledge representation is driven by the needs of knowledge intensive
problem solvers such as expert systems. Natural language understanding, or the
problem of getting machines to understand human languages, has also placed demands on
knowledge representation. Representation languages including logic, rules, frames and
objects provide Al programmers with a powerful set of tools for building knowledge
bases. These techniques are also formalized in a number of commercial software
packages that simplify program development. A particularly powerful class of these
programs are hybrid tools, which provide the programmer with multiple representation
languages, typically rules and frame/objects, different inferencing techniques, such as
inheritance or rule based reasoning, multiple search strategies, such as forward and
backward search, and a rich set of tools for constructing user interfaces and debugging
programs. Aeadings in Knowledge Representation (Brachman and Levesque 1985)
provides a valuable introduction.

.4 ARernative Archi r for Intelligent Program

While the main thrust of Al research has been toward developing more expressive
representations and inference strategies, another school of research has focused on
alternatives to the explicit representation of problem solving knowledge. Parallel
Distributed Processing, orPDP, (Rumelhart and McClelland 1986) refers to models of
computation which use large numbers of relatively simple computational units, working
in combination, to produce powerful results.

Neural networks are typical of this approach. Patterned after the low level
architecture of biological brains, neural networks consist of large networks of artificial
neurons. Like biological neurons, these elements are extremely simple: they accept
signals from other neurons; these inputs are augmented by weights on the input lines.
Each element computes a function of these weighted inputs and, depending on the result of
this calculation, either send a signal to other neurons or remain quiet. Through the
patterns of connections in the network and the ability of neurons to stimulate or inhibit
each other, these systems demonstrate powerful collective behaviors.

Figure 4 illustrates a simple type of neural network called a perceptron (Rosenblatt
1962), as it might be used in a computer vision system. The inputs to the network are
sets of pixels from the image. The outputs are classifications of the image. Through the
system of weights and the pattern of connections, the network is able to compute a
mapping from the features of the image onto an appropriate classification.

Figure 4 here**

These systems show promise for complementing representation based Al. For
example, since the computation is spread out over many elements, parallel distributed
approaches can draw conclusions in spite of the presence of significant amounts of noise
in the data. Also, progress has been made in developing algorithms which allow PDP
systems to learn from experience by, for example, adjusting the weights on the
connections in a neural net.

D. rv f_Applicatign Ar
Artificial Intelligence is driven by a number of important and demanding application

areas. While it is impossible to be exhaustive in the scope of a single encyclopedia
entry, a brief survey of these applications is essential to any discussion of Al.

8 4/24

Automatic Theorem Proving (Wos and others 1984} is one of the oldest areas of Al,
tracing its origins past Newell and Simon's Logic Theorist to the philosophical work of
Russell and Whitehead. Work in theorem proving continues, focusing on the development
of more sophisticated models of mathematica! reasoning and on extending techniques to a
wider range of application areas. In particular, theorem proving has found success in
the design and validation of logic circuits and the verification of computer programs.

Knowledge Based Systems (KBS) (Luger and Stubblefield 1989; Waterman 1986)
include some of the most successful applications of Al techniques. KBSs have been
written in fields as diverse as medical diagnoses, industrial process control, geology and
engineering design. Current issues in knowledge based systems include knowledge
representation, knowledge acquisition, and the design of intelligent user interfaces.

Planning (Fikes and others 1972) addresses the problem of finding a series of
actions that will reach some goal. While robotics are the most obvious application of
planning technology, these techniques have also found application in such areas as the
design of manufacturing processes and the planning of scientific experiments. Planning
is complicated by the necessity of representing changes in a world over time. Also, since
such applications as robotics require interaction with the real worid, planners must
deal with noise and error, allowing for the detection and correction of plan failures.
Another important issue for planners is the frame problem: how can a planner anticipate
the side effects of a given action?

Natural Language Understanding (Allen 1987; Winograd 1983) is one of the most
challenging areas of Al research. The goal of creating computer programs that can
effectively communicate in human language is an old one. While there have been
impressive successes in highly constrained areas of discourse, general language
understanding remains elusive. The problem is with the large amounts of knowledge
required to understand even simple sentences. Consequently, natural language
understanding has driven, and continues to motivate research in knowledge
representation and the semantics of human language.

Machine Learning (Kodratoff and Michalski 1990; Michalski and others 1983;
Michalski and others 1986) addresses the problem of creating computer programs that
can learn, either from their own experience, observation or interpreting high level
advice. In addition to work in Parallel Distributed Processing, considerable work has
been done in symbol based learning, focusing on the use of prior knowledge to guide
learning in new domains.

Knowledge Representation and Reasoning (Brachman and Levesque 1985) continues
to be a vital area of research, focusing on the development of representation languages
that capture the full range of knowledge, and the development of sophisticated models of
representational semantics.

Cognitive Science (Colling and Smith 1988; Newell and Simon 1972) continues
with the goal of using computer programs as a tool and a metaphor for understanding
human cognition. This field blends Al with psychology, philosophy, linguistics,
neuroscience, anthropology and other fields in an effort to understand the functioning of
the human mind at neural, cegnitive and social levels.

Other important application areas include commonsense reasoning and naive physics,

game playing, computer vision, intelligent tutoring systems, the design of intelligent
user interfaces, automatic programming, the design of symbolic programming languages

10 4/24

and the simulation of complex systems. All of these areas are the focus of active, ongoing
research and promise to enrich the field of artificial intelligence for years to come.

E. The Future of Al: Knowledge Media and Autonomous Agents

The effort to produce intelligent problem solvers has led to the development of
knowledge based systems: programs which use explicitly represented knowledge to solve
problems and explain the reasoning that led to those solutions. This approach has proven
its viability through a number of successful programs; however, a number of
limitations and unfulfilled promises remain. The difficulties in acquiring and organizing
sufficient knowledge, along with the likely impossibility of ever proving that such a
knowledge base is actually correct, suggest that we should emphasize the creation of
intelligent apprentices and assistants, rather than autonomous intelligent agents. Some
researchers, such as Weizenbaum, have questioned the morality of letting machines
make decisions in such intimately human domains as faw, politics and business
{(Weizenbaum 1976).

Thus, the current generation of intelligent machines may be seen as extending,
rather than replacing our own intellects. However, work will continue on designing
machines that are capable of functioning as independent autonomous agents. A range of
applications, such as space exploration or the use of robots to perform tasks, like
nuclear reactor maintenance, which are too dangerous for humans, could benefit greatly
from the development of such machines.

Another path of development accepts the possibility that computers may be
inherently limited in their ability to achieve human like intelligence and focuses on the
development of intelligent assistants. One of the exciting and revolutionary potential
outcomes of this research is the development and growth of electronic knowledge media.

While most contemporary electronic media is highly efficient at storing large
amounts of factual information, for example in data bases, they are limited in capturing
knowledge. Knowledge requires complex organization: representations such as frames,
objects and rules can capture the complex structure of human knowledge. Knowledge is
dynamic: an expert, either a human or a machine, can apply the appropriate expertise to
specific problem instances. Knowledge is flexible: it can be applied freely to a class of
problems. Knowledge changes: knowledge based systems allow frequent updates through
the addition of new rules to the knowledge base.

Knowledge base technologies promise the development of media for storing,
transmitting, searching, and applying dynamic knowledge, just as books allow us to
transmit more static information. As knowledge representation techniques progress and
standards evolve, we will see formal knowledge become a marketable commodity. it is
possible to envision the development of knowledge utilities, supplying knowledge bases to
subscribers, much like contemporary utilities supply water and power. These changes
in the transmission and use of knowledge will provide science, business and government
with powerful tools for progress, as well as dangerous opportunities for their abuse.

Artificial intelligence reflects some of the oldest concerns of western civilization in
the light of modern computational technology. The notions of rationality, representation
and reason are now under scrutiny as perhaps never before, since computer scientists
demand to understand them operationally, even algorithmically. At the same time, the
political, economic and ethical situation of our species forces us to confront our
responsibility for the effects of our artifices. The interplay between applications and

11 4/24

the more humanistic inspirations for much of Al continues to inspire hosts of rich,
challenging questions.

A number of general references for Al include The Encyclopedia of Artificial
Intelligence (Shapiro 1987) and The Handbook of Artificial Intelligence (Barr and
Feigenbaum 1981). Our discussion of the historical foundation of Al is taken from
Artificial Intelligence and The Design of Expert Systems (Luger and Stubblefield 1989),
where a more detailed discussion of the algorithms and representations of artificial
intelligence is available.

References

Allen, J. 1987. Natural Language Understanding. Menlo Park, Cal: Benjamin
Cummings. :

Barr, Avron and E. A. Feigenbaum. 1981. The Handbook of Artificial intelligence.
Los Altos, Cal.: William Kaufmann.

Brachman, R. J. and H. J. Levesque, ed. 1985. Readings in Knowledge
Representation. Los Altos, Cal.: Morgan Kaufmann.

Buchanan, Bruce G. and Edwared H. Shortliffe, ed. 1984. Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford Heuristic Programming
Project. Reading, Mass.: Addison-Wesley Publishing Company.

Collins, A. and E. E. Smith, ed. 1988. Readings in Cognitive Science. Los Altos,
Cal.: Morgan Kaufmann.

Feigenbaum, E. A. 1963. The Simulation of Verbal Learning Behavior. In
Computers and Thought, ed. E. A. Feigenbaum and J. Feldman. New York:
McGraw-Hill.

Feigenbaum, E. A. and J. Feldman, ed. 1963. Computers and Thought. New York:
McGraw-Hill.

Fikes, R., P. Hart, and N. Nilsson. 1972. Learning and Executing Generalized
Robot Plans. Artificial Intelligence 3 (4): 251-288.

Gelernter, H. 1963. Realization of a Geometry Theorem Proving Machine. In
Computers and Thought, ed. E. A. Feigenbaum and J. Feldman. New York:
McGraw-Hill.

Kodratoff, Y. and R. S. Michalski, ed. 1990. Machine Learning: An Artificial
Intelligence Approach, Vol lil. Los Altos, Cal.: Morgan Kaufmann.

Luger, George F. and William A. Stubblefield. 1989. Artificial Intelligence and
the Design of Expert Systems. Redwood City: Benjamin Cummings.

Michalski, R. S., J. G. Carbonell, and T. M. Mitchell, ed. 1983. Machine Learning:
An Artificial Intelligence Approach. Palo Alto, Cal.: Tioga.

Michalski, R. S., J. G. Carbonell, and T. M. Mitchell, ed. 1986. Machine Learning:
An Artificial Intelfigence Approach, Vol Il. Los Altos, Cal.: Morgan Kaufmann.

12 4/24

Newell, A. and H. Simon. 1972. Human Problem Solving. Englewood Cliffs, New
Jersey: Prentice-Hall.

Newell, A. and H. Simon. 1976. Computer science as empirical inquiry: Symbols
and search, CACM 19 (3): 113-126.

Newell, A. and H. A. Simon. 1963a. Empirical explorations with the Logic Theory
Machine: A case study in heuristics. in Computers and Thought, ed. E. A.
Feigenbaum and J. Feldman. New York: McGraw-Hill.

Newell, A. and H. A. Simon. 1963b. GPS: A program that simulates human
thought. In Computers and Thought, ed. E. A. Feigenbaum and J. Feldman. New
York: McGraw-Hill.

Pearl, Judea. 1984. Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Reading, Mass.: Addison-Wesley.

Rosenblatt, F. 1962. Principles of Neurodynamics. New York: Spartan.

Rumelhart, D. E. and J. L. McClelland. 1986. Paralle! Distributed Processing.
Cambridge Mass.: MIT Press.

Samuel, A. L. 1959. Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development 11 : 601-617.

Shapiro, S. C., ed. 1987. Encyclopedia of Artificial Intelligence. New York: John
Wiley & Sons.

Turing, A. A. 1950. Computing Machinery and Intelligence. Mind 59 : 433-460.

Waterman, D. A. 1986. A Guide to Expert Systems. Reading, Mass.: Addison
Wesley.

Waterman, D. A. and F. Hayes-Roth, ed. 1978. Pattern Directed Inference
Systems. New York: Academic Press.

Weizenbaum, J. 1976. Computer Power and Human Reason. San Francisco: W. H.
Freeman.

Winograd, T. 1983. Language as a Cognitive Process: Syntax. Reading, Mass:
Addison Wesley.

Wos, L., R. Overbeek, E. Lusk, and R. Boyle. 1984. Aufomated Reasoning:
Introduction and Applications. Englewood Cliffs, New Jersey: Prentice-Hall.

13

4724

The start state The goal state

Figure 1. The start state and the goal state of the “blocks world” problem.

Figure 2. Part of the search space of the “blocks world” problem.

‘
Cy— A
Working CS - AB
Memory .

Fattern

Pattern — Action

Cn_“ An
|

|

I

Figure ' .3 A producticn systemn. Control foops until
working memory pattern no longer matches
the conditions of any productions.

Squzre Triangie . . .

Output units, mapped on
ciferent classifications

innibitcry
and excitatory ares

irput units encede
ztures of image

Figure 4. An example of a perceptron for image classificatipn.

